Search results for "Picard–Lindelöf theorem"

showing 10 items of 14 documents

Generalized Weyl's theorem and quasi-affinity

2010

AlgebraPicard–Lindelöf theoremGeneral MathematicsMathematicsStudia Mathematica
researchProduct

An Integral Version of Ćirić’s Fixed Point Theorem

2011

We establish a new fixed point theorem for mappings satisfying a general contractive condition of integral type. The presented theorem generalizes the well known Ciric's fixed point theorem [Lj. B. Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. 12 (26) (1971) 19-26]. Some examples and applications are given.

AlgebraPure mathematicsSchauder fixed point theoremPicard–Lindelöf theoremSettore MAT/05 - Analisi MatematicaGeneral MathematicsFixed-point theoremType (model theory)Fixed pointBrouwer fixed-point theoremKakutani fixed-point theoremComplete metric space $\lambda$-generalized contraction fixed point contractive condition of integral type.MathematicsMediterranean Journal of Mathematics
researchProduct

Schaefer–Krasnoselskii fixed point theorems using a usual measure of weak noncompactness

2012

Abstract We present some extension of a well-known fixed point theorem due to Burton and Kirk [T.A. Burton, C. Kirk, A fixed point theorem of Krasnoselskii–Schaefer type, Math. Nachr. 189 (1998) 423–431] for the sum of two nonlinear operators one of them compact and the other one a strict contraction. The novelty of our results is that the involved operators need not to be weakly continuous. Finally, an example is given to illustrate our results.

Discrete mathematicsQuantitative Biology::Neurons and CognitionPicard–Lindelöf theoremApplied MathematicsFixed-point theoremFixed-point propertyKrasnoselskii fixed point theoremSchauder fixed point theoremNonlinear integral equationsMeasure of weak noncompactnessBrouwer fixed-point theoremKakutani fixed-point theoremContraction (operator theory)Nonlinear operatorsAnalysisMathematicsJournal of Differential Equations
researchProduct

Some characterizations of operators satisfying a-Browder's theorem

2005

Abstract We characterize the bounded linear operators T defined on Banach spaces satisfying a-Browder's theorem, or a-Weyl's theorem, by means of the discontinuity of some maps defined on certain subsets of C . Several other characterizations are given in terms of localized SVEP, as well as by means of the quasi-nilpotent part, the hyper-kernel or the analytic core of λ I − T .

Discrete mathematicsUnbounded operatora-Browder's theoremFredholm theoryPicard–Lindelöf theoremApplied MathematicsEberlein–Šmulian theoremBanach spaceSpectral theoremOperator theorya-Weyl's theoremShift theoremLocal spectral theoryBounded inverse theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Variations on Weyl's theorem

2006

AbstractIn this note we study the property (w), a variant of Weyl's theorem introduced by Rakočević, by means of the localized single-valued extension property (SVEP). We establish for a bounded linear operator defined on a Banach space several sufficient and necessary conditions for which property (w) holds. We also relate this property with Weyl's theorem and with another variant of it, a-Weyl's theorem. We show that Weyl's theorem, a-Weyl's theorem and property (w) for T (respectively T*) coincide whenever T* (respectively T) satisfies SVEP. As a consequence of these results, we obtain that several classes of commonly considered operators have property (w).

Intersection theoremDiscrete mathematicsWeyl's theoremsPure mathematicsPicard–Lindelöf theoremProperty (w)Applied MathematicsLeast-upper-bound propertyBanach spaceLocalized SVEPBounded operatorDanskin's theoremBrowder's theoremsMathematics::Representation TheoryBrouwer fixed-point theoremBounded inverse theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Analytic solutions of the Navier-Stokes equations

2001

We consider the time dependent incompressible Navier-Stokes equations on an half plane. For analytic initial data, existence and uniqueness of the solution are proved using the Abstract Cauchy-Kovalevskaya Theorem in Banach spaces. The time interval of existence is proved to be independent of the viscosity.

Picard–Lindelöf theoremPlane (geometry)General MathematicsMathematical analysisMathematics::Analysis of PDEsBanach spaceInterval (mathematics)Half-spaceSobolev inequalityPhysics::Fluid DynamicsMathematics (all)UniquenessNavier–Stokes equationsMathematics
researchProduct

Radó–Kneser–Choquet theorem

2014

We present a new approach to the celebrated theorem of Rado–Kneser–Choquet (RKC) on univalence of planar harmonic mappings. The novelty lies in establishing a continuous path (isotopy) from the given harmonic map to a conformal one. Along this path the mappings retain positive Jacobian determinant by virtue of so-called Minimum Principle. These ideas extend to nonlinear uncoupled systems of partial differential equations, as in Iwaniec, Koski and Onninen [‘Isotropic p-harmonic systems in 2D, Jacobian estimates and univalent solutions’, Rev. Mat. Iberoam, to appear]. Unfortunately, details of such digression would lead us too far afield. Nonetheless, one gains (in particular) the RKC-Theorem…

Pure mathematicsArzelà–Ascoli theoremFundamental theoremPicard–Lindelöf theoremGeneral MathematicsCompactness theoremta111Fixed-point theoremBrouwer fixed-point theoremSqueeze theoremMean value theoremMathematicsBulletin of the London Mathematical Society
researchProduct

The Third Main Theorem

1998

Pure mathematicsFactor theoremPicard–Lindelöf theoremFixed-point theoremBrouwer fixed-point theoremMathematics
researchProduct

The Second Main Theorem

1998

Pure mathematicsFundamental theoremPicard–Lindelöf theoremCompactness theoremFixed-point theoremBrouwer fixed-point theoremSqueeze theoremMathematicsMean value theoremCarlson's theorem
researchProduct

THE BISHOP-PHELPS-BOLLOBAS THEOREM FOR BILINEAR FORMS

2013

In this paper we provide versions of the Bishop-Phelps-Bollobás Theorem for bilinear forms. Indeed we prove the first positive result of this kind by assuming uniform convexity on the Banach spaces. A characterization of the Banach space Y Y satisfying a version of the Bishop-Phelps-Bollobás Theorem for bilinear forms on ℓ 1 × Y \ell _1 \times Y is also obtained. As a consequence of this characterization, we obtain positive results for finite-dimensional normed spaces, uniformly smooth spaces, the space C ( K ) \mathcal {C}(K) of continuous functions on a compact Hausdorff topological space K K and the space K ( H ) K(H) of compact operators on a Hilbert space H H . On the other hand, the B…

Pure mathematicsPicard–Lindelöf theoremApplied MathematicsGeneral MathematicsCalculusBilinear formMathematics
researchProduct